Sur l'inégalité de Turán-Kubilius friable
نویسندگان
چکیده
منابع مشابه
Sur l'inégalité de Turán-Kubilius friable
An integer n is said to be y-friable if its largest prime factor P (n) does not exceed y. By convention, P (1) := 1. Classical notations are S(x, y) := {n x : P (n) y} for the set of y-friable integers not exceeding x and Ψ(x, y) for its cardinality. The study of friable restrictions of arithmetic functions is closely connected to the Kubilius model of probabilistic number theory. In this frame...
متن کاملInégalité de Turán-Kubilius friable et indépendance asymptotique
Elaborating on previous works and taking advantage of estimates on the local behaviour of the counting function of friable integers, we determine the optimal range in which the friable Turán-Kubilius constant tends to 1.
متن کاملConstantes de Turán-Kubilius friables: une étude numérique
method, saddle-point method. This study is a follow-up to two recent works: [la Bretèche et Tenenbaum 05] and [Martin et Tenenbaum 08]. The former provides a friable (i.e., with respect to integers free of large prime factors) extension of the classical Turán–Kubilius inequality, while the latter furnishes a theoretical method for sharp evaluation of the involved constants. Here, we complement ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2010
ISSN: 0075-4102,1435-5345
DOI: 10.1515/crelle.2010.077